Relativistic attosecond physics
نویسندگان
چکیده
A study, with particle-in-cell simulations, of relativistic nonlinear optics in the regime of tight focus and ultrashort pulse duration sthe l3 regimed reveals that synchronized attosecond electromagnetic pulses fN. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, Phys. Rev. Lett. 92, 063902 s2004dg and attosecond electron bunches fN. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, and G. Mourou, Phys. Rev. Lett. 93, 195003 s2004dg emerge efficiently from laser interaction with overdense plasmas. The l3 concept enables a more basic understanding and a more practical implementation of these phenomena because it provides spatial and temporal isolation. The synchronous generation of strong attosecond electromagnetic pulses and dense attosecond electron bunches provides a basis for relativistic attosecond optoelectronics. © 2005 American Institute of Physics. fDOI: 10.1063/1.1880032g
منابع مشابه
Relativistic attosecond electron bunches from laser-illuminated droplets.
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles which depend on the ratios of droplet radius to wavelength and plasma frequency to laser frequency. The mechanism behind the multi-MeV attosecond elect...
متن کاملAttosecond Control of Relativistic Electron Bunches using Two-Colour Fields
Energy coupling during relativistically intense laser-matter interactions is encoded in the attosecond motion of strongly driven electrons at the pre-formed plasma-vacuum boundary. Studying and controlling this motion can reveal details about the microscopic processes that govern a vast array of light-matter interaction physics and applications. These include research areas right at the forefro...
متن کاملAttosecond electron sheets and attosecond light pulses from relativistic laser wakefields in underdense plasmas
A method for producing dense attosecond electron sheets (tens nanometers thick corresponding to attosecond duration) and single intense attosecond light pulse is reported based on relativistic laser wakefields in underdense plasmas. By making use of gas targets this method allows for high repetition rates required for applications.
متن کاملTime delay in valence shell photoionization of noble gas atoms
We use the non-relativistic random phase approximation with exchange to perform calculations of valence shell photoionization of Ne, Ar, Kr and Xe from their respective thresholds to photon energy of 200 eV. The energy derivative of the complex phase of the photoionization matrix elements is converted to the photoelectron group delay that can be measured in attosecond streaking or twophoton tra...
متن کاملIntense circularly polarized attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses.
We have investigated the polarization of attosecond light pulses generated from relativistic few-cycle laser pulse interaction with the surface of overdense plasmas using particle-in-cell simulation. Under suitable conditions, a desired polarization state of the generated attosecond pulse can be achieved by controlling the polarization of the incident laser. In particular, an elliptically polar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005